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Within the effective mass approximation the sub-band energy structure of semiconductor cylindrical core/shell nanowires is 
simulated. The heteroepitaxial strain of the core-shell heterostructure is modeled by the elastic continuum approach within 
an isotropic treatment. The general equilibrium equation, Hooke's law and interface boundary matching condition are used 
in the strain modeling. The analytical results are applied to ZnTe/ZnSe, a wide band gap type-II heterostructure. 
Localization of the photoexcited electron-hole carriers and oscillator strength are investigated as function of the shell 
thickness. The calculated oscillator strengths are in accordance with previous reported results. 
 

(Received September 22, 2015; accepted October 28, 2015) 

 

Keywords: Nanowires, Core/Shell, Optics 

 

 

 

1. Introduction 
 

One-dimensional quantum confined semiconductors 

are of large interest from both theoretical and 

technological perspectives in the recent past. Thus, 

nanowires have been investigated for improving optical 

absorption [1-4] and charge separation [5,6] in 

photovoltaic devices. Current transport in nanowire 

resonant tunneling diodes has been investigated in view of 

downscaling of integrated circuits [7,8]. The progress in 

crystal growth has led to the fabrication of regular and 

stable core/shell nanowires structures [9], which allow the 

optical and transport properties of such elongated 

nanostructures to be tuned. Confining charge carriers to 

the shell is important in photovoltaic devices for an 

efficient collection. Confinement is the result of two 

physical phenomena, namely, (i) band alignment and (ii) 

strain-engineering of the core/shell structures. At the 

contact of two different crystals band alignment induces a 

potential confinement, which is modified by the strain 

field induced by lattice mismatch. As a result, the band 

gap is modified, and consequently the electronic structure 

and the electrical and optical properties of the 

heterostructure are changed. For example, for an accurate 

simulation of the (multi)excitonic spectra the strain should 

be carefully taken into account as it influences the 

effective masses of the carriers [10] or frequencies of 

optical phonons modes [11,12]. In spintronics, in the 

storage and computing electronic devices, the strain is one 

of the control parameters. For example, in the intrinsic 

spin Hall effect, the conductivity of a two-dimensional 

electronic gas is influenced by both magnetic and strain 

fields [13,14]. 

 Within the continuum elasticity, the strain field in 

isotropic or anisotropic crystal heterostructures is obtained 

by either (i) solving the elasticity equilibrium equation or 

(ii) by minimizing the elastic energy stored in the 

nanostructure[15]. The theoretical investigations of elastic 

properties of heterostructures experiencing pseudomorphic 

strain are mainly based on analytical Eshelby's work [16]  

on elastic inclusions. In hetero-nanostructures, this method 

is applied in often applied (see, e.g. Refs. [17-19]). The 

main requirement in Eshelby's treatment applicability is 

that the matrix (the embedding material) is infinite. In the 

present work, we investigate core/shell structures with 

finite size of the shell (matrix) and consequently an 

elasticity modeling of hetero-nanostructures that takes into 

account this aspect should be adopted. The structure we 

model is ZnTe/ZnSe shell nanowire (CSNW), a type II 

heterostructure (see classification of heterostructures as 

function of their band alignments in, e.g., Ref. [20]). The 

paper is structured as follows. 

In section 2, we present the theory used in describing 

the strain field and the single particle states (SPSs) of the 

CSNW. In section 3, we present the results, the photo-

excited carriers location and the oscillator strengths of the 

CSNW. Section 4 contains the conclusions. 

 

 

2. Theory 
 

First, based on Refs. [21-24], we briefly introduce the 

lattice mismatch strain field model for CSNW. Within this 

model, the strain distribution is obtained by solving the 

linear elasticity equilibrium equation. We consider an 

infinite length and isotropic CSNW (elastic constants are 

position independent in each of the two components, core 

and shell). One approximates the displacement as having 

radial symmetry, )0,0),(( ruru , and the axial strain 

tensor components as 0)( zeA

zz  and 0)( zeB

zz . This 

approximation, which holds in limit of long CSNW and 

thick shell, makes the displacement field irrotational. Then, 

within the continuum elasticity approach the equilibrium 

equation is simply: 0divgrad u [25]. The linear stress 

( ij )-strain ( ij ) tensor relation is used and the following 

boundary conditions are imposed: 
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(i) continuous stress at the 

interfaces, )()( 00 rr B

rr

A

rr   , 

(ii) vanishing pressure outside CSNW, 0)( RB

rr ,

   

(iii) shrink-fit induced by the lattices mismatch, 

    0000 rruru B

r

A

r  , 

where 0r  is the core radius, R is the core+shell radius and 

AAB aaa /)(0   is the relative lattice mismatch (A, B, 

denote the core, and shell, respectively). Then, the 

following strain tensor components in cylindrical 

coordinates are obtained [24]: 
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; BA EE ,  are Young modulus and 

BA ,  Poisson ratios of the core and shell, respectively. 

 Second, we model the heterostructures band lineup. In 

semiconductor lattice-mismatch heterostructures the 

epitaxial strain induces deformations that shift both 

valence band (VB) and conduction band (CB) edges. The 

values of the VB and CB extrema at the   point (we 

consider direct band semiconductors) are given by [26]: 

 

hydcv

u

cvcv eaEE ,,,  ,           (2) 

 

where the unstrained values are related by g

u

v

u

c EEE   

and gE  is the unstrained bandgap, cva ,   is the volume 

deformation potential (subscript v for VB, c for CB), and 

hyde  is the hydrostatic strain. For the VB, we denote the 

bandoffset as B

v

A

vh EEV   where index h holds for hole 

states as is schematically represented in Fig. 1. 

 For the CB, we denote the bandoffset as 
B

c

A

ce EEV   , where index e holds for electronic states. 

According to this model, we have for the CSNW in 

cylindrical coordinates the following potentials as 

functions of r: 
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Fig. 1 Schematic band lineup in presence of strain for the  

type II heterostructure, ZnTe/ZnSe CSNW 
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In order to obtain the energy levels, we use the one-

particle Schrödinger equation in the effective mass and 

envelope wave function approximations. In cylindrical 

coordinates ),,( zr r , Schrödinger equation of the 

envelope wave functions reads [27]: 
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where    is the effective mass of the charge carrier in the 

xy plane and ||  is the effective mass along the z axis. 

Taking into consideration the form of the wave function, 
iczim

mmk eerR )()(  r  and using the notation 

  22 2/ kE   , with ||/ ck and   , Eq. 

(3) reduces  to the differential equation: 
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Using the change of variable, rki , where 

  0/22  iii VEk   if iVE   and 

  0/22  iii VEk   if iVE   (with the notations, 

he

ii

,   for the effective mass of the electron (e) or hole 

(h) in the core (i=A) or shell (i=B), and iV  for the values of 

the piecewise-constant potential in region i, that is, 0iV  

or e,hV ), and considering )()( mm vrR  , Eq. (4a) reduces 

to the Bessel differential equation: 
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Depending on the values of V and  , we have the 

following cases: a) if V , Eq. (4b) reduces to a Bessel 

differential equation having as solution a linear 

combination of Bessel functions of the first kind, mJ , and 

Bessel functions of the second kind, mY ; ii) if V  Eq. 

(4b) reduces to a modified Bessel differential equation 

having as solution a linear combination of modified Bessel 

functions of the first kind, mI , and Bessel functions of the 

second kind, mK  

For electron states, to get regular solution on z axis: if 

eV  we disregard the modified Bessel function of the 

second kind mK , and if eV  we disregard the Bessel 

function of the second kind mY . Then, for the core we 

have the following cases: i) if eV ,  the solution is of 

the form )()( 1

)1( rkIArR mmm  , with   /21

e

AeVk  , 

and ii) if eV  the solution is of the form  

)()( 2

)2( rkJBrR mmm  , with   /22

e

AeVk   . In the 

shell, where 0V , we have no restrictions and the 

solution is of the form, )()()()3( krYDkrJCrR mmmmm  . 

For the case eV , the boundary conditions are as 

follows: 
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After replacing )3()1( , mm RR in Eq. (5a), we obtain the 

transcendental equation:  
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where ',',' mmm YJI  are the first derivatives of the Bessel 

functions and modified functions with respect to r. The 

orthonormalization equation for this case is: 
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The energy of the electron SPSs is obtained by 

solving the transcendental equation. Introducing the 

energy levels into the orthonormalization equation, we 

calculate the orthonormalization constants   and obtain the 

form of the radial component of the wave function )(rRm . 

Similarly, for the case 0V , by replacing the index (1) 

by (2) in Eq. (5a), we obtain the transcendental equation: 
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where ',' mm YJ   are the first derivatives of the Bessel 

modified functions, with respect to r.  The 

orthonormalization equation reads: 
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 For hole states, according to the effective mass 

approximation model, we take into account the heavy and 

light holes. We consider the spherical part of the heavy-

hole masss ( hh ) and light-hole masses ( lh ) assumed by 

the parabolic dispersion of the one-band model [21], 
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Consequently, to obtain the energy structure we 

collect the two kinds of hole SPSs. In the core, the solution 

of the radial component is )()( 1

)1( rkJArR mmm  , where 

/21

h

Ak  . In the shell, for hV , 
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BhVk  and for hV , 
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where   /2 03

h

BVk   . Then, we impose similar 

boundary conditions as in the case of electronic states. In 

the first case, hV , 
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and we obtain the transcendental equation:   

 

)()()()(

)(')()()('

)(

)('

022202

022202

01

01

rkKRkIRkKrkI

rkKRkIRkKrkI

rkJ

rkJ

mmmm

mmmm

m

m

h

A

h

B










,     (8b) 

 

and the orthonormalization equation, 
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In the second case, 0V , by replacing the index (2) 

by (3) in Eq. (8a), the transcendental equation reads: 
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and the orthonormalization equation is 
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3. Application to ZnTe/ZnSe core/shell  
     nanowires 
 

As a result of weak mixing of the hole states in wide 

bandgap heterostuctures [28], the orbitals obtained by the 

one-band model are close to the realistic ones. The band 

lineup of ZnTe/ZnSe CSNW in presence of strain at 

 point is obtained by using the model-solid theory of 

Van de Walle [26] with the material parameters from 

Table 1. Direction dependence of the effective masses is 

disregarded for the  point in Eq. (3). From Ref. [33], the 

bulk (unstrained) values are: 09.3uZnTe cE , 

eV38.3uZnSe cE , 34.5uZnTe

v E , eV07.6uZnSe

v E . 

With these bulk values of the band edge from Eqs. (1) and 

(2) (with 071.00  ) by using the fact ZnTe and ZnSe 

are direct band semiconductors, we find the band lineup 

and the electron and hole SPSs in presence of strain at 

 point as function of R and r0 as shown in Fig. 2. 

 

 
Table 1. Material parameters used in the work. 

 
 

 
ZnTe ZnSe 

a (Å) 6.08
a 

5.65
a 

E (10
10 

Nm
-2

) 4.17
a
 4.51

a
 

  0.363
a
 0.376

a
 

gapE (eV) 2.25
 e
 2.69

 e
 

vE (eV) -5.34
 e
 -6.07

 e
 

va (eV) 0.79
f
 1.65

f
 

 

 

 

 

 

 

 

ca (eV) -5.83
f
 -4.17

f
 

1  3.74
g 

3.77
g 

2  1.07
g 

1.24
g 

3  1.64
g 

1.67
g 

lh
i 

0.152 0.148 

hh
i 

1.092 1.292 

e  0.20
j
 0.21

j 

a
Ref. 

29
; 

b
Ref.

30
; 

c
Ref.

31
; 

d
Ref.

32
; 

e
Ref.

33
; 

f
Ref. [26]; 

g
Ref.

34
; 

h
Ref.

35
; 

i
calculated with Eq. (7). 

 

 

We obtain that the strain induces enlargement 

(shrinkage) of the band gap for ZnTe (ZnSe), and the band 

gaps, ZnTeZnTeZnTe

vcg EEE  , ZnSeZnSeZnSe

vcg EEE   

increase with the shell thickness. As shown in Fig. 2a, the 

electron energy decreases with the shell thickness, which 

results in decreasing of the lowest energy transition, in 

accordance with the results regarding the absorption and 

emission spectra reported by Bang et al. [36] for 

ZnTe/ZnSe CS quantum dots. On the other hand, one can 

see the hole energies in Fig. 2b remain practically not 

affected by the shell thickness. The first four hole energy 

levels are of heavy hole type and for larger radii R the first 

light hole is almost superposed over a heavy hole energy. 

The square of the radial part of the envelope wave 

function multiplied by r is shown in Fig. 3 for the first two 

electron and hole energy levels. One can see that for thin 

enough shell the electron ground state has a significant 

localization in the core and with the thickness increase the 

ground state is localized in the shell. This prediction has a 

practical importance in design of photovoltaic CSNWs, 

where separation of the electron and hole facilitates the 

charge carriers separation. The hole is confined in the 

core. 
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Fig. 2 Energy of the first seven electron (blue color) and 

hole (red color) single particle states in ZnTe/ZnSe 

CSNW at  point. Core radius is r0=2nm. Continuum 

lines with up (down) triangle symbols show the band 

lineup in presence of lattice mismatch strain of electron 

(hole) states for ZnTe-green color, ZnSe-orange color. 

Zero reference is ZnSe CB edge, see Fig. 1. First 

appeared light hole state is represented as a hollow disk;  

it is almost superposed on a heavy hole state. 

 

 

 The optical spectra can be described by the oscillator 

strength [21,37], 
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which characterizes the probability of interband transition 

between two SPSs, i (characterized by the set of quantum 

numbers, km, ) and j (characterized by the set of quantum 

numbers, ',' km ); 22

02 PmEP  and 

xpsmiP x)/( 0  is the Kane momentum matrix 

element. In Fig. 4 we present the influence of the shell 

thickness on the oscillator strength obtained from the first 

seven hole and electron SPSs shown in Fig. 2 for 

eV1.19PE  [34]. A larger overlap of the envelope wave 

functions determine a stronger oscillator strength.  

 

The same characteristic observed for CS quantum 

dots, namely, thicker shell leads to a decrease of the 

oscillator strength [21, 23] remains valid for CSNWs. Also 

a continuous red shift of the lowest energy transition, 11 

(as denoted in Fig. 4) with the shell thickness is obtained, 

similarly to the experiment [36]. 

 

0 1 2 3

0

1

2

3

4

r|
R

m
(r

)|
2
 x

1
0

1
0

r(nm)(a)
 

0 2 4 6

0

1

2

3

4

(b)

r|
R

m
(r

)|
2
 x

1
0

1
0

r(nm)  
 

Fig. 3 Probability density of the first three SPSs for type-

II ZnTe/ZnSe CSNW, 
2

)(rRr m electron (blue color) and 

hole (red color): (a) R=3nm; (b) R=6nm. Continuous 

line - first  state;  dashed   line - second    state;  dotted  

line-third state. 

 

  

 In absence of experimental results, in Fig. 5, we 

compare the absorption results obtained by Bang et al. [36] 

for CS quantum dots with our simulated results, for 

ZnTe/ZnSe CS NWs with nm20 r as function of shell 

thickness. We assign the lowest energy transition, 11, 

active one as shown in Fig. 5 to the main peak recorded in 

Ref. [36] in absorbance measurements.
 
The agreement is 

satisfactory and it encourages comparison of our model to 

the experimental results for absorption in ZnTe/ZnSe CS 

NWs. 
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Fig.4 Oscillator strengths at  point for ZnTe/ZnSe 

CSNW with core radius r0=2nm and (a) R=3nm, (b) 

R=10nm. In the label the first digit represents the hole 

states and the second electron state. The digits from 1 to 

7 are associated to the number of the state in ascending  

order. 
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Fig. 5 Absorption wavelength for ZnTe/ZnSe: (a) CS 

quantum dot with r0=2nm; (b) CSNW with r0=2nm. The 

legend: ● - experimental values and  ● - simulated values, 

as function of the total radius R. The simulation is 

obtained for the lowest energy transition  corresponding   

to  the  transition  11 in  Fig. 4. 

 

 

 

 

 

 

4. Conclusions 
 

Within the one-band model effective mass 

approximation a strain continuum elastic model is applied 

to predict the energy structure of CS NWs and oscillator 

strengths. The model is applied to a type II direct wide 

band gap ZnTe/ZnSe heterostructure. The results are 

obtained for the   point by considering both heavy and 

light hole states. Given the good results obtained within 

one-band model for Znte/ZnSe quantum dots, we expect 

the present results to be a valid guide in description of the 

optical absorption in such heterostructures. The present 

study confirms the importance of the heteroepitaxial strain 

in modeling of core/shell mismatch nanostructures. We 

think the present approach is a very useful model for at 

least preliminary calculations of the optical properties of 

type-II CS NWs of wide band gap, where the band mixing 

effect is of less importance. 

 

 

References 
 

  [1] E. Garnett, P.Yang, Nano Lett. 10, 1082 (2010). 

  [2] J. Li, H.Y. Yu, S.M. Wong, X. Li, G. Zhang, 

        P. G.-Q. Lo, D.-L. Kwong, Appl. Phys. Lett  

        95, 243113 (2009). 

  [3] H. Bao, X. Ruan, Opt. Letters 35, 3378 (2010). 

  [4] M. M. Adachi, M. P. Anantram, K. S. Karim, Nano  

        Lett. 10, 4093 (2010). 

  [5] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, 

        P. Yang, Nature Mat. 4, 455 (2005). 

  [6] B. M. Kayes, H. A. Atwater, N. S. Lewis, J. Appl.  

        Phys. 97, 114302 (2005). 

  [7] M. Björk, B. Ohlsson, C. Thelander, A. Persson,  

        K. Deppert, L. Wallenberg, L. Samuelson,  Appl Phys  

        Lett 81,  4458 (2002). 

  [8] M. Zervos, Nanoscale Research Letters  

        9, 509 (2014). 

  [9] L. J. Lauhon, M. S. Gudiksen, D. Wang,  

        C. M. Lieber, Nature 420, 57 (2002). 

[10] T. O. Cheche, EPL 86, 67011 (2009). 

[11] M. P. Chamberlain, M. Cardona, B. K. Ridley,  

        Phys. Rev. B 48, 14356 (1993); T.O. Cheche, M.C. 

 Chang, Chem. Phys. Lett. 406  479 (2005). 

[12] S. N. Klimin, V. M. Fomin, J. T. Devreese, 

        D. Bimberg, Phys. Rev. B 77, 045307 (2008). 

[13] T. O. Cheche, Phys. Rev. B 73, 113301 (2006). 

[14] T. O. Cheche, E. Barna, Appl. Phys. Lett.  

         89, 042116 (2006). 

[15] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson,  

        A. Zungera, J. Appl. Phys. 83, 5 (1998). 

[16] J. D. Eshelby, Proc. R. Soc. London, Ser. A  

        241, 376 (1957). 

 

 

 

 

 

 

 



Optical properties of ZnTe/ZnSe core/shell nanowire                                                               1667 

 

[17] V. G. Stoleru, D. Pal, E. Towe, Physica E  

        15, 131 (2002). 

[18] A. D. Andreev, J. R. Downes, D. A. Faux,  

        E. P. O’Reilly, J. Appl. Phys. 86, 297 (1999). 

[19] T. O. Cheche, Y.-C. Chang, J. Appl. Phys.  

        104, 083524 (2008). 

[20] M. E. Pistol, C. E. Pryor, Phys. Rev. B 

        78, 115319 (2008). 

[21] T. O. Cheche, V. Barna, Y. C. Chang, Superlattice  

        Microstruct.  60, 475 (2013). 

[22] T. O. Cheche, V. Barna, I. Stamatin, J Optoelectron  

        Adv. Mater. 15, 615 (2013). 

[23] T. E. Pahomi, T. O. Cheche, Chem. Phys. Lett.  

        612, 33 (2014). 

[24] T. E. Pahomi, S. B. Stanciu, J Optoelectron Adv.  

         Mater. 16, 501 (2014). 

[25] L. D. Landau, E.M. Lifshitz, Theory of Elasticity,  

        Pergamon, 1970. 

[26]  C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989). 

[27] G. Bastard, Wave mechanics applied to 

         semiconductor heterostructures, EDP Sciences  

         (1992) 

[28] P. C.  Sercel, K. J.  Vahala, Phys. Rev. B  

       42, 3690 (1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[29] D. Belincourt, H. Jaffe, L.R. Shiozawa, Phys. Rev.  

        129, 1009 (1963). 

[30] Y.H. Li, X.G. Gong, S.H. Wei, Phys Rev B  

        73, 245206 (2006). 

[31] R.B. Hall, J.D. Meakin, Thin Solid Films  

        63, (1979) 203. 

[32] S. Adachi, Properties of Group-IV, III-V and II-VI  

        Semiconductors, John Wiley & Sons, Chichester, 

        2005. 

[33] S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda,  

        G. D. Scholes, Adv Mater 23, 180 (2011). 

[34] P. Lawaetz, Phys Rev B 4, 3460 (1971). 

[35] D. Mourad, J.P. Richters, L. Gerard, R. Andre,  

        J. Bleuse, H. Mariette, ArXiv:1208.2188v2. 

[36] J. Bang, J. Park, J.H. Lee, N. Won, J. Nam, J. Lim,  

        B.Y. Chang, H.J. Lee, B. Chon, J. Shin, J.B. Park,  

        J.H. Choi, K. Cho, S.M. Park, T. Joo, S. Kim, Chem. 

         Mater. 22, 233 (2010). 

[37] J. H. Davies, The Physics of Low-Dimensional  

        Semiconductors: An Introduction, Cambridge  

        University Press, Cambridge, 1996, p.318. 

 
____________________________ 
*
Corresponding author: silviageorgescu451@yahoo.com 

 

http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=G.+Bastard&search-alias=books&field-author=G.+Bastard&sort=relevancerank
mailto:silviageorgescu451@yahoo.com

